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Environmentally Focussed Aircraft 

 EFA is Conducting Studies into Future Regional 
Aircraft Concepts 

– Assumed EIS 2025 

 Aim is to reduce environmental impact 
– GHG emissions, local air quality, noise 
– Current focus on climate impact 
– What level of reduction in climate impact is possible? 
– What is the impact on operating cost? 

 Consider cruise Mach and altitude as design 
variables, not requirements 

– Cruise Mach 0.5 – 0.85 
– ICA 18,000ft – 41,000ft 

 Intend to quantify incremental benefits 
– Optimized aircraft using current technologies 
– Impact of advanced technologies 
– Impact of unconventional configurations 
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Project Funding 

 The EFA program began in 2008 and is funded primarily by Bombardier’s 
Strategic Technology portfolio budget 

 A portion of the EFA program is funded by GARDN 

BA1 

BA2 Long Range 
Business Jet 

Regional 
Aircraft 
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Bombardier 
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http://www.utias.utoronto.ca/
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Conceptual Multi-disciplinary Design Optimization (CMDO) 

 EFA  study  makes  use  of  Bombardier’s  Conceptual  MDO  capability  to  
size aircraft configurations 

 Chosen reference aircraft used for methods calibration and 
optimisation start point 

 Design Variables 
– Engine scale factor 
– Wing geometry (area, aspect-ratio, sweep, thickness to chord, TE crank 

angle, flap deflection @ TO) 
– Cruise Mach 
– Initial Cruise Altitude 

 Constraints 
– Max range 
– High-speed mission (% range at +M0.04) 
– Balanced field length 
– Approach speed 
– WAT limit 

 Objectives 
– Minimum MTOW 
– Minimum DOC 
– Minimum fuel-burn 
– Minimum climate impact 
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Combustion Emissions

Atmospheric Chemistry 
and Physics
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CMDO Workflow Development 

Quantifying Climate Impact 
 

• Developed tool to quantify climate impact of given aircraft design 
 Includes all climate emissions not just CO2 

 Quantifies global temperature change from impulse emission over 100 years 

 Can represent uncertainty of emissions impact 
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CMDO Workflow Development 

Operating Cost Estimation 
 

• DOC components 
 Fuel, oil & lubricants 

 Crew 

 Maintenance 

 Landing fees 

 Insurance 

 Financing 

 Depreciation 

• Aircraft Price 
• Price correlated to productivity (function of range, pax, speed, cabin volume, TOFL) 

• Impact of cruise speed on operating cost 
• Have assumed revenue per flight not affected by cruise speed 

• Have assumed fixed flight hours per year, regardless of speed 

• Hence slower aircraft have increased ownership cost per mission (due to less missions per year) 

• Hence slower aircraft has higher DOC per mission (for same AC price and COC) 

• This captures the lower productivity of the slower aircraft 
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CMDO Workflow Development 

Variable cruise Mach and altitude 
 

• Cruise Mach and ICA defined as design variables 
• Climb/descent profile and flight envelope defined as a function of chosen Mach/ICA 

 MMO = MLRC + 0.06 

 MD = MMO + 0.07 

 VMO = MMO @ 70% specified ICA 

 VD = VMO + 60kt 

 Max Ceiling = ICA + 5000ft 
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Design-Space Exploration Results 
Trading Climate Impact with Operating Cost 
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Design-Space Exploration Results 
Breakdown of Climate Impact 

 Results show that 
CO2 is the most 
potent climate impact 
emission 

 NOx effect is 
comprised of both 
warming and cooling 
components 

 NOx and AIC effects 
are strongly altitude 
dependant 

 Significant reduction 
in cruise altitude 
largely removes NOx 
and AIC effects 

 Is climate impact the 
most appropriate 
metric? 

Minimum DOC 
Solution 

Minimum Climate 
Impact Solution 
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Design-Space Exploration Results 
Trading Fuel-Burn with Operating Cost 
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Design-Space Exploration Results 
Trading Fuel-Burn with Operating Cost 

12 

 Results assume $3/USG fuel price 
(2011 average) 
 

 Significant fuel burn reduction is 
possible while also reducing 
operating cost by reducing cruise 
Mach 
 

 Further reduction in cruise Mach 
offers further fuel burn reduction 
but with increased operating cost 

 
 Optimization solutions are 

effectively min fuel aircraft at a 
given cruise Mach whereas 
CRJ700 is closer to min MTOW 
 

 Min DOC solutions do not address 
OEM business case needs 
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Design-Space Exploration Results 
Variation in Fuel Price 
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14 

Regional Aircraft Configurations 

 Three conventional reference configurations were established during a 2011 study 
– Engine on fuselage (Baseline CRJ700) 
– Engine on low-wing 
– Engine on high-wing 

 Each configuration was subject to manual design process 
– Revised wing and fuselage mass estimates based on engine location 
– Rebalancing with new engine location 
– Resizing of empennage 
– Revised wetted areas 
– Revised CLmax for high-wing configuration 

 Each configuration has been implemented in the CMDO workflow as a reference aircraft 
– Geometry 
– Mass breakdown 
– Wetted areas 
– Drag calibration 
– High lift characteristics 
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Design-Space Exploration Results 
Comparison of Aircraft Configurations 

 Comparison of three aircraft 
configurations 

 

 Multiple optimization runs 
performed to generate 
50,000+ solutions per 
configuration 

 

 $3/USG fuel price assumed 
(2011 average) 

 

 Engine on high-wing 
configuration (red) performs 
less well due to increased 
drag of additional belly 
fairings 

 

 Advantage of engine on 
fuselage configuration (blue) 
at lower Mach is thought to 
be due to different fuselage 
mass estimation method – 
requires further investigation 
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Next Steps: Advanced Technology Conventional Configurations 

 Design-space exploration will be repeated using advanced technologies 
 Objective is to quantify the emissions and DOC reductions possible by 2025 without departing 

from a conventional airframe configuration 
 Need to define assumptions for each discipline 
 Propulsion 

– Advanced high bypass-ratio turbofan 

– Open rotors 

– Novel architectures 

– Advanced turboprop 

 Aerodynamics 
– Advanced design tools and methods 

– Laminar flow 

 Structures 
– Advanced design tools and methods 

– Composite materials 

 Systems 
– More electric / bleedless architecture 

– Highly Integrated Systems (HIS) / Integrated Modular Architecture (IMA) 



P
R

IV
A

TE
 A

N
D

 C
O

N
FI

D
E

N
TI

A
L 

©
 B

om
ba

rd
ie

r I
nc

. o
r i

ts
 s

ub
si

di
ar

ie
s.

 A
ll 

rig
ht

s 
re

se
rv

ed
. 

17 

Next Steps: Advanced Technology Conventional Configurations 
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Next Steps: Advanced Technology Conventional Configurations 

 Design-space exploration will be repeated using advanced technologies 
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from a conventional airframe configuration 
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Next Steps: Advanced Technology Conventional Configurations 
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Next Steps: Advanced Technology Conventional Configurations 

 Design-space exploration will be repeated using advanced technologies 
 Objective is to quantify the emissions and DOC reductions possible by 2025 without departing 

from a conventional airframe configuration 
 Need to define assumptions for each discipline 
 Propulsion 

– Advanced high bypass-ratio turbofan 

– Open rotors 

– Novel architectures 

– Advanced turboprop. 

 Aerodynamics 
– Advanced design tools and methods 

– Laminar flow 

 Structures 
– Advanced design tools and methods 

– Composite materials 

 Systems 
– More electric / bleedless architecture 

– Highly Integrated Systems (HIS) / Integrated Modular Architecture (IMA) 
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Next Steps: Unconventional Configurations 

 What level of climate impact reduction can be achieved by 
utilising unconventional aircraft configurations? 

 Configurations of interest 
– Strut-braced wing 

– Joined/box-wing 

– 3-surface/canard 

– Blended-wing 

– Lifting fuselage 

 Dependant on physics-based analysis methods 
– Wing mass tool capable of rapid assessment of strut-braced and 

joined-wings is under development 

– Vortex lattice aerodynamic methods will be employed to predict lift, 
drag and stability of canard, 3-surface and joined-wing configurations 
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Conclusions 

 Conceptual MDO tool has been further developed to 
meet EFA project needs 

– Climate impact analysis 

– Variable cruise Mach and altitude 

– Revised DOC methods 

 Design-space exploration for EIS 2000 conventional 
configurations complete 

– Significant reduction in climate impact is possible by 
reducing cruise altitude 

– Both fuel-burn and operating cost can be reduced by 
lowering cruise Mach 

– Variation in fuel price has been explored 

 Design-space exploration for EIS 2025 conventional 
configurations in progress 

 Physics based structures and aerodynamics tools 
under development for unconventional configurations 


